BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 50 (11), 3078 (1977)

Formation Constants of Dibenzo-18-crown-6 Complexes with Alkali Metal Ions in Dimethyl Sulfoxide, N,N'-Dimethyl Formamide, and Propylene Carbonate at 25 °C

Niro Matsuura, Kisaburo Umemoto, Yasuyuki Takeda, and Atsuko Sasaki Department of Pure and Applied Sciences, College of General Education,

The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received May 19, 1977)

In a previous paper¹⁾ we reported formation constants for 1:1 complexes of dibenzo-18-crown-6 (DBC) with Li⁺, Na⁺, K⁺, Rb⁺, and Cs⁺ measured in DMSO (dimethyl sulfoxide), DMF (N,N'-dimethyl formamide), and PC (propylene carbonate). The fraction (α) of the cation in the 1:1 complex M(DBC)⁺ is given by

$$\alpha = \frac{\Lambda^1 - \Lambda^2}{\Lambda^1 - \Lambda^3},$$

where Λ^1 , Λ^2 , and Λ^3 denote the corresponding phoreograms (1, 2, and 3, Figs. 1—5).¹⁾

Since α is equal to 0 for complete dissociation, the phoreograms 1 and 2 should coincide at zero concentration. Actually in PC as well as in DMF the curves apparently converge. However, no such trend is found between the phoreograms 1 and 3. A well defined Λ_0^3 value will be obtained at extreme dilution, if extrapolation is made. However, a straightforward extrapolation is not good for a complexed salt in the presence of excess DBC, and we must be satisfied with the values of K_f (formation constant of a 1:1 complex) obtained in a concentration range in which an accurate conductance measurement can be carried out.

According to the definition of K_{ϵ} (Eq. 2 of the pre-

vious paper)¹⁾, the value of K_f is approximately equal to α/C when α is much smaller than unity, where α is the fraction of the cation in the 1:1 complex and C is the initial molar concentration of the alkali metal ion and DBC.

This condition, however, is not easily satisfied because α has a value of the order of 0.1 or greater as is shown in phoreogram 3.

The value of K_f for Na(DBC)⁺ at 1.44×10^{-3} M of NaClO₄¹⁾ is about three times larger than that given by Shchori *et al.* at 1.0×10^{-3} M of NaSCN.²⁾ At this stage no prediction can be made for the discrepancy between them, since it is likely that Na⁺ and ClO₋₄ dissociate completely in DMF, whereas Na⁺ and SCN⁻ associate slightly in DMF. Moreover the K_f values in Table 1¹⁾ are practically constant within these concentration ranges.

References

- 1) N. Matsuura, K. Umemoto, Y. Takeda, and A. Sasaki, Bull. Chem. Soc. Jpn., 49, 1246 (1976).
- 2) E. Shchori, J. Jagur-Grodzinski, Z. Luz, and M. Shporer, J. Am. Chem. Soc., 93, 7133 (1971).